Hapln1a Is Required for Connexin43-Dependent Growth and Patterning in the Regenerating Fin Skeleton

نویسندگان

  • Jayalakshmi Govindan
  • M. Kathryn Iovine
چکیده

Cell-cell communication, facilitating the exchange of small metabolites, ions and second messengers, takes place via aqueous proteinaceous channels called gap junctions. Connexins (cx) are the subunits of a gap junction channel. Mutations in zebrafish cx43 produces the short fin (sof (b123) ) phenotype and is characterized by short fins due to reduced segment length of the bony fin rays and reduced cell proliferation. Previously established results from our lab demonstrate that Cx43 plays a dual role regulating both cell proliferation (growth) and joint formation (patterning) during the process of skeletal morphogenesis. In this study, we show that Hapln1a (Hyaluronan and Proteoglycan Link Protein 1a) functions downstream of cx43. Hapln1a belongs to the family of link proteins that play an important role in stabilizing the ECM by linking the aggregates of hyaluronan and proteoglycans. We validated that hapln1a is expressed downstream of cx43 by in situ hybridization and quantitative RT-PCR methods. Moreover, in situ hybridization at different time points revealed that hapln1a expression peaks at 3 days post amputation. Expression of hapln1a is located in the medial mesenchyme and the in the lateral skeletal precursor cells. Furthermore, morpholino mediated knock-down of hapln1a resulted in reduced fin regenerate length, reduced bony segment length and reduced cell proliferation, recapitulating all the phenotypes of cx43 knock-down. Moreover, Hyaluronic Acid (HA) levels are dramatically reduced in hapln1a knock-down fins, attesting the importance of Hapln1a in stabilizing the ECM. Attempts to place hapln1a in our previously defined cx43-sema3d pathway suggest that hapln1a functions in a parallel genetic pathway. Collectively, our data suggest that Cx43 mediates independent Sema3d and Hapln1a pathways in order to coordinate skeletal growth and patterning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cx43-Dependent Skeletal Phenotypes Are Mediated by Interactions between the Hapln1a-ECM and Sema3d during Fin Regeneration

Skeletal development is a tightly regulated process and requires proper communication between the cells for efficient exchange of information. Analysis of fin length mutants has revealed that the gap junction protein Connexin43 (Cx43) coordinates cell proliferation (growth) and joint formation (patterning) during zebrafish caudal fin regeneration. Previous studies have shown that the extra cell...

متن کامل

Hsp47 mediates Cx43-dependent skeletal growth and patterning in the regenerating fin

Skeletal morphogenesis describes how bones achieve their correct shape and size and appropriately position joints. We use the regenerating caudal fin of zebrafish to study this process. Our examination of the fin length mutant short fin (sof (b123)) has revealed that the gap junction protein Cx43 is involved in skeletal morphogenesis by promoting cell proliferation and inhibiting joint formatio...

متن کامل

Connexin43 (GJA1) is required in the population of dividing cells during fin regeneration.

In zebrafish, mutations in the gap junction gene connexin43 lead to short bony fin ray segments that give rise to the short fin phenotype. The sof(b123) mutant exhibits fins that are half the length of wild-type fins and have reduced levels of cx43 mRNA. We find that sof(b123) regenerating fins exhibit reduced levels of cell proliferation. Interestingly, the number of dividing cells per unit le...

متن کامل

Correlation between RA-induced apoptosis and patterning defects in regenerating fins and limbs.

We have compared the ability of RA to induce apoptosis in regenerating fins and limbs in order to establish whether there may be a possible causal relationship between RA-induced cell death and the different patterning abnormalities observed in these two systems following RA treatment. In regenerating fins RA affects the anteroposterior axis and induces narrowing of the fin and fusion of rays. ...

متن کامل

Dynamic remodeling of the extra cellular matrix during zebrafish fin regeneration.

Extracellular matrix plays a dynamic role during the process of wound healing, embryogenesis and tissue regeneration. Caudal fin regeneration in zebrafish is an excellent model to study tissue and skeletal regeneration. We have analyzed the expression pattern of some of the well characterized ECM proteins during the process of caudal fin regeneration in zebrafish. Our results show that a transi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014